

ORIGINAL ARTICLE

Miwa Akasofu · Yoshio Oda

Immunohistochemical detection of p53 in cervical epithelial lesions with or without infection of human papillomavirus types 16 and 18

Received: 4 February 1994/Accepted: 5 October 1994

Abstract Using formalin-fixed and paraffin-embedded cervical tissues, we examined infection with human papillomavirus (HPV) types 16 and 18 by Southern blot analysis following polymerase chain reaction (PCR), and the accumulation of p53 protein by immunohistochemistry in 30 cases of normal or metaplastic cervix, 17 cases of cervical intraepithelial neoplasia grade I (CIN I), 20 cases of CIN II, 37 cases of CIN III and 23 cases of invasive squamous cell carcinoma (ISCC). In addition, we examined the ratio of HPV-infected cells by *in situ* hybridization (ISH) and the alteration of p53 gene using PCR followed by single-strand conformation polymorphism (PCR-SSCP) in 2 cases of CIN III and 12 cases of ISCC, in which overexpression of p53 was immunohistochemically detected. HPV DNA was detected in 5 cases (16.7%) of normal or metaplastic cervix, 5 cases (29.4%) of CIN I, 9 cases (45.0%) of CIN II, 26 cases (70.3%) of CIN III and 15 cases (65.2%) of ISCC. Positivity for HPV in the groups of CIN III and ISCC was significantly higher than in the normal or metaplastic cervix ($P<0.05$). The accumulation of p53 was not detected in the normal or metaplastic cervix, CIN I and CIN II. High-level p53 accumulation was identified in basal and suprabasal atypical cells in 27.0% (10/37) of CIN III and in carcinoma cells in 43.5% (10/23) of ISCC cases, and low-level accumulation was identified in atypical cells of 35.1% (13/37) of CIN III and in carcinoma cells in 30.4% (7/23) of ISCC cases. The accumulation of p53 was found to coexist with infection by HPV in 17 (46.0%) of 37 CIN III cases and 12 (52.2%) of 23 ISCC cases, and high-level p53 accumulation was more frequently detected in HPV-positive ISCC cases. Either HPV infection or accumulation of p53 was found in 16.7% (5/30) of the cases of normal or metaplastic cervix, 29.4% (5/17) of CIN I, 45.0% (9/20) of CIN II, 86.5% (32/37) of CIN III and 87.0% (20/23) of ISCC cases. These results suggest that the inactivation of p53

function by HPV infection or alteration of p53 protein itself precedes the development of tumours with a fully malignant and invasive phenotype and plays an important role in tumorigenesis in the uterine cervix. ISH study provided no correlation between the degree of immunohistochemical positivity for p53 and the ratio of HPV-positive cells in the same lesions. PCR-SSCP detected the alteration of p53 gene in at least 4 cases of ISCC, 2 of which were accompanied by HPV infection.

Key words Human papillomavirus · p53 · Cervical neoplasm

Introduction

Recent molecular biological studies have suggested that infection by human papillomavirus (HPV) is implicated in the pathogenesis of cervical carcinoma. Up to now, 60 and more types of HPV have been identified [16]; among them, types 16 and 18 are most frequently detected in cervical intraepithelial neoplasia (CIN) and cervical carcinoma [7, 17, 34], and these types of HPV are often integrated in the genome of the neoplasm [11, 19, 47]. In vitro studies have shown that two early genes of HPV types 16 and 18, the E6 and E7 open reading frames (ORFs), are capable of transforming cells to immortalized forms [25, 54]. Products from the E6 and E7 ORFs of HPV types 16 and 18 have been shown to form complexes with the normal cellular proteins, p53 or the retinoblastoma gene product Rb, both of which are well known as tumour suppressors, and those complexes result in the inactivation of the suppression function [18, 52]. Scheffner et al. [45] have demonstrated that E6 protein of the oncogenic HPVs binds to the p53 gene product and facilitates the degradation of the p53 protein, suggesting that the selective degradation of the tumour suppressor protein is responsible for cervical carcinogenesis. However, allelic loss or mutation of these genes of p53 in the genome inactivates tumour suppressor activity and may also contribute directly to the progression of

M. Akasofu (✉) · Y. Oda

Department of Pathology, School of Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920, Japan

Table 1 Primers for human papillomavirus (HPV) types 16 and 18 and β -globin genes. Numbers in parentheses represent the length and region of amplification (bp base pair)

	Sense primer	Anti-sense primer
HPV16 (140 bp, E6 region)	5' AAGGGCGTAACCGAAATCGGT'	5' GTTTGCAGCTCTGTGCATA'
HPV18 (140 bp, E6 region)	5' AAGGGCGTAACCGAAATCGGT'	5' GTGTTCAAGTCCGTGCACA'
β -globin (262 bp, exon 1)	5' GGTTGGCCAATCTACTCCCAGG'	5' TGGCTCCTAACCTGTCTG'

cellular transformation [36]. Several investigators have reported that genetic analysis of cervical carcinoma cell lines or primary cervical carcinomas has shown HPV-positive carcinomas to have normal tumour suppressor function but HPV-negative carcinomas contained mutations in these tumour suppressor genes. They suggested that either mutation of tumour suppressor genes or infection by HPV inactivates tumour suppression, resulting in the development of cervical carcinoma [14, 15, 38, 46, 55].

In the present study, using formalin-fixed and paraffin-embedded tissues, we examined the infection of HPV types 16 and 18 by Southern blot hybridization following polymerase chain reaction (PCR) and the accumulation of p53 protein by immunohistochemistry. We studied the normal or metaplastic cervix, CIN, and invasive squamous cell carcinoma (ISCC) in an attempt to clarify the rate of involvement of HPV infection and p53 alteration in the population of these lesions. In addition, we examined the population of HPV-infected cells by *in situ* hybridization (ISH) and the alteration of p53 gene using PCR followed by single-strand conformation polymorphism (PCR-SSCP) in several cases of CIN III and ISCC, in which overexpression of p53 was detected immunohistochemically.

Materials and methods

One hundred and ninety one cervical tissue cases fixed with 10% neutral buffered-formalin and embedded in paraffin were selected from specimen files in our department, Fukui Saiseikai Hospital, Maizuru Kyousai Hospital, Komatsu City Hospital, and Kanazawa City Hospital, taken from 1986 to 1993. Six to ten 4 μ m-thick sections were cut from paraffin blocks. One section was stained with haematoxylin and eosin and examined microscopically. The other sections were used for viral detection by PCR and for immunohistochemical detection of p53. In addition, several cases of CIN III and ISCC, in which overexpression of p53 was evident immunohistochemically (see Results), were selected to examine the ratio of HPV-infected cells by ISH and the alteration of p53 gene by PCR-SSCP.

Virus detection by PCR

DNA was extracted from four to eight sections of cervical mucosas or neoplastic lesions obtained on the basis of histological analysis, using the method of Goelz et al. [23] with some modifications. The tissues were deparaffinized with xylene, dehydrated with ethanol and dried. The tissue pellets were treated in 200 μ l digestive mixture (500 μ g/ml proteinase K; 2% SDS; 10 mM TRIS-HCl, pH 8.0; 150 mM NaCl; 10 mM EDTA) at 37°C overnight. Following extraction with phenol/chloroform, nucleic acids were recovered by ethanol precipitation and dissolved in 41.5 μ l

Table 2 Probes for polymerase chain reaction (PCR) products of HPV types 16 and 18

HPV16	5' CATTITATGCACCAAAAGAGAACTGCAATG'
HPV18	5' TGAGAAACACACCACAATACTATGGCGCGC'

sterilized water. PCR was performed on 50 μ l of the final reaction volume containing 10 mM TRIS-HCl, pH 8.3; 50 mM KCl; 1.5 mM MgCl₂; 0.001% (w/v) gelatin; 0.2 mM each of dATP, dCTP, dGTP and dTTP; 0.25 μ M of each virus primer; and 2.5 U of a thermal stable DNA polymerase (AmpliTaq; Perkin-Elmer Cetus, Norwalk, Conn.). The virus primers used in this study are shown in Table 1. Forty rounds of amplification were done in the DNA Thermal Cycler (Perkin-Elmer Cetus) with a 94°C denaturation step (1 min), 55°C annealing step (1 min) and 72°C extension step (1 min). A 10 μ l volume of the PCR reaction mixture was applied to 2% agarose gel stained with ethidium bromide. To verify sufficient extraction of DNA from the paraffin-embedded tissues, extracts were also processed in parallel for amplification of a 262-bp segment of the human β -globin gene (β -globin primer set; Takara, Japan) (Table 1). The cases in which the PCR band for the human β -globin gene was visible on agarose gel were subsequently processed for virus DNA analysis by Southern blotting. The PCR products were blotted onto a GeneScreen Plus filter membrane (Du Pont-New England Nuclear, USA). After being fixed by ultraviolet light, the filter was prehybridized at 42°C for 2 h in 5 \times SSC (1 \times SSC = 0.15 M NaCl and 0.015 M sodium citrate, pH 7.0), 5 \times Denhardt's solution (1 \times Denhardt's solution = 0.02% Ficoll, 0.02% polyvinylpyrrolidone and 0.02% bovine serum albumin), 50% formamide, 1% SDS and 150 μ g/ml sonicated salmon sperm DNA. The filter was then hybridized at 42°C for 16–18 h with the above solution containing each virus-specific ³²P-labelled probe (1 \times 10⁶ cpm/ml) derived from an internal sequence of the amplified product (Table 2), washed three times in a solution of 2 \times SSC and 1% SDS for 30 min at 42°C, and then subjected to autoradiography.

The specificity of the primers and probes used in this study (Tables 1, 2) has been confirmed by other workers [44, 48]. To avoid false positives, we carefully handled all specimens and reagents according to the standard set of recommended protocols [20, 33].

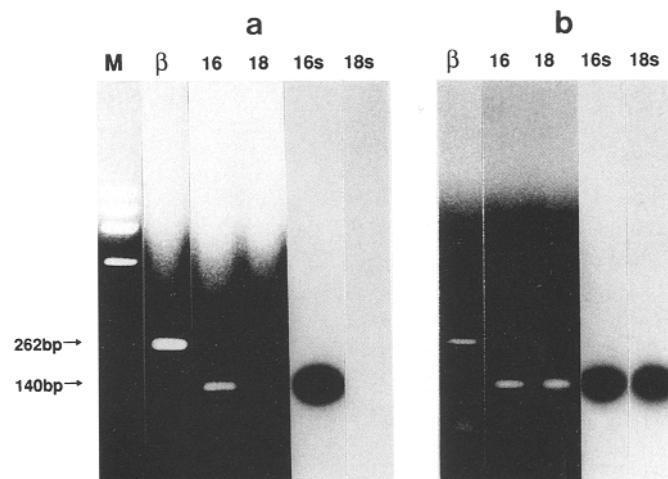
p53 immunohistochemistry and staining evaluation

p53 was detected by the avidin-biotin-peroxidase complex (ABC) method of Hsu et al. [27] using an ABC kit (Dako, Glostrup, Denmark). Briefly, deparaffinized sections were treated for 10 min with 0.3% H₂O₂ to block endogenous peroxidase. The sections were incubated with a polyclonal rabbit antibody to p53 oncoprotein, CM1 (diluted at 1:200, Novocastra Laboratories, Newcastle upon Tyne, UK), at 4°C overnight and sequentially with a biotinylated anti-rabbit antibody (diluted at 1:200; Vector Laboratories, Burlingame, Calif., USA) at room temperature for 30 min, followed by incubation with avidin and biotinylated horseradish peroxidase complex. After development of peroxidase reaction, the tissue was counterstained with methyl green. Rectal carcinoma tissues were used as positive controls. Negative controls were stained simultaneously, using normal rabbit IgG.

Table 3 Primers of exons 5–8 of human *p53* gene. Numbers in parentheses represent the length of amplification

Exon	Sense primer	Anti-sense primer
5 (211 bp)	5'CTCTTCCTGCAGTACTCCCTGC3'	5'GCCCGAGCTGCTCACCATCGCTA3'
6 (185 bp)	5'GATTGCTCTTAGGTCTGGCCCTC3'	5'GGCCACTGACAACCACCCCTAAC3'
7 (139 bp)	5'GTGTTGTCTCCTAGGTTGGCTCTG3'	5'CAAGTGGCTCCTGACCTGGAGTC3'
8 (200 bp)	5'ACCTGATTCCCTACTGCCTCTGGC3'	5'GTCCTGCTGCTTACCTCGCTTAGT3'

Table 4 Detection of HPV types 16 and 18 in cervical tissues by PCR (*CIN* cervical intraepithelial neoplasia, *ISCC* invasive squamous cell carcinomas, + positive, – negative, (%) percentage of β -globin-positive case, <%> percentage of HPV-positive case


Histological diagnosis	Number of β -globin-positive cases	Number of HPV-positive cases	HPV16+ HPV18–	HPV16– HPV18+	HPV16+ HPV18+
Normal or metaplastic cervix	30	5 (16.7%)	3 <60.0%>	1 <20.0%>	1 <20.0%>
CIN I	17	5 (29.4%)	1 <20.0%>	3 <60.0%>	1 <20.0%>
CIN II	20	9 (45.0%)	7 <77.8%>	0	2 <22.2%>
CIN III	37	26 (70.3%)	18 <69.2%>	3 <11.5%>	5 <19.2%>
ISCC	23	15 (65.2%)	9 <60.0%>	0	6 <40.0%>
Total	127	60 (47.2%)	38 <63.3%>	7 <11.7%>	15 <25.0%>

* Significant difference ($P<0.01$)** Significant difference ($P<0.05$)

Immunostaining was evaluated by two independent observers (M.A. and Y.O.), and any discrepancies were resolved by joint review. All analysis for *p53* immunostaining was performed without knowledge of the patients' clinical history or HPV infection status. Nuclear stainability regardless of cytoplasmic staining was regarded as positive. The intensity of nuclear staining was graded as either absent (0), weak (1), moderate (2) or strong (3). The frequency of nuclear staining was also graded as absent (0), focal (1; <10% of the epithelial cells staining), regional (2; between 10 and 50% of the epithelial cells staining), or diffuse (3; >50% of the epithelial cells staining). By the sum of intensity and frequency grades, cervical epithelial lesions were roughly divided into three groups in terms of *p53* accumulation. Lesions with four to six points were categorized as neoplasms with high-level *p53* accumulation, epithelial lesions with two or three points were categorized as having neoplasms with low-level *p53* accumulation, and lesions with no points were categorized as having no accumulation. This system has been known to correlate reliably with the presence of mutations in exons 5–8 of the *p53* gene [5, 53]. High-level *p53* accumulation correlates with mis-sense mutations in exons 5 to 8 of the *p53* gene, whereas low-level *p53* accumulation correlates with deletions, splicing mutants, non-sense mutants or mis-sense mutations outside of exons 5–8 [5], although the biological significance of low-level *p53* accumulation is not completely understood [53].

Virus detection by ISH

Twenty-three cases of CIN III and 16 cases of ISCC were analyzed for HPV infection using a non-isotopic ISH kit (Patho Gene DNA Probe Assay for Identification of HPV, Enzo, New York, USA). According to the manufacturer's protocol, a dewaxed tissue section was treated in a proteinase K solution at 37°C for 15 min. The tissue section was heat-denatured at 95°C for 10 min and incubated in the hybridization solution containing a biotin-labelled probe cocktail of HPV types 16 and 18. After being washed three times, the slide was processed for detection of DNA-DNA hybrids with a streptavidin-biotinylated horseradish peroxidase complex. HPV 16 probe control slides were used as a positive control.

Fig. 1 Detection of human papillomavirus (HPV) types 16 and 18 DNA in cervical intraepithelial neoplasia (CIN) III (a) and invasive squamous cell carcinoma (ISCC) (b) by Southern blot hybridization following polymerase chain reaction (PCR). β , 16 and 18 indicates β -globin, HPV type 16 and HPV type 18 on agarose gel electrophoresis after PCR amplification. 16s and 18s indicate Southern blot analysis of the lanes 16 and 18, respectively. M indicates a size marker (λ X174 DNA digested with *Hae* III); bp base pair

Polymerase chain reaction/single-strand conformation polymorphism

PCR-SSCP [35] of exons 5–8 of *p53* gene was performed in 2 cases of CIN III and 12 cases of ISCC. Two cases of CIN III and 9 cases of ISCC presented high-level *p53* accumulation, and 3 cases of ISCC presented low-level accumulation (see Results). DNA (0.1 μ g) was applied to the PCR in the mixture (5 μ l) described above using a set of two appropriate oligonucleotide primers (Clontech Laboratories, Calif., USA) labelled with γ^{32} P-ATP

Table 5 Accumulation of p53 in cervical tissues by immunohistochemistry (*n* number of β -globin positive cases)

Histological diagnosis	<i>n</i>	Number of p53-positive cases		
		Total	Low-level	High-level
Normal or metaplastic cervix	30	0	0	0
CIN I	17	0	0	0
CIN II	20	0	0	0
CIN III	37	23 (62.1%)	13 (35.1%)	10 (27.0%)
ISCC	23	17 (73.9%)	7 (30.4%)	10 (43.5%)

(7000 Ci/mmol, 160 mCi/ml) by polynucleotide kinase. The nucleotide sequences of the primers used are shown in Table 3. The PCR product (5 μ l) with 5 μ l formamide dye mixture (95% formamide:20 mM EDTA:0.05% bromphenol blue:0.05% xylene cyanol) was heated to 80°C for 5 min, and then 2 μ l of the preparation was loaded on a 6% polyacrylamide gel to which 5% glycerol was added. Electrophoresis was performed at 40 W for 3 h at 4°C. The gel was dried on filter paper and exposed to X-ray film at -80°C for 1–12 h with an intensifying screen. Human genomic DNA obtained from colonic mucosa was used as a normal control.

Statistical analysis

Statistical analysis was performed on results of virus infection and p53 accumulation using the chi-square test.

Results

Virus detection by PCR

The β -globin gene was amplified in 127 of 191 cervical tissue samples (66.5%): 30 cases of normal or metaplastic tissues, 17 cases of CIN I, 20 cases of CIN II, 37 cases of CIN III, and 23 cases of ISCC. Because these positive tissues were considered to contain DNA of sufficient quality and quantity for amplification, they were examined further and analysed to detect HPV. The results of virus detection in these cases are summarized in Table 4. HPV DNA was detected in 5 cases (16.7%) of normal or metaplastic cervix, 5 cases (29.4%) of CIN I, 9 cases (45.0%) of CIN II, 26 cases (70.3%) of CIN III and 15 cases (65.2%) of ISCC (Fig. 1). There was a tendency for the positive rate in each lesion to become higher with progression. The positivity rates of HPV in the groups of CIN III and ISCC were significantly higher than those in the group of normal or metaplastic tissues ($P<0.01$ and $P<0.05$, respectively). HPV type 16 was more often detected than type 18. Both types were detected in the same tissues of approximately a quarter of the HPV-positive cases, especially in cases of ISCC.

p53 immunohistochemistry

The immunohistochemical results for p53 are summarized in Table 5. p53 was not detected in normal or metaplastic cervix, CIN I or CIN II. However, p53 was de-

tected granularly or diffusely in nuclei of basal and suprabasal atypical cells in 23 (62.1%) of 37 CIN III (Figs. 2, 3) and in nuclei of tumour cells in 17 (73.9%) of 23 ISCC cases (Fig. 4). High-level p53 accumulation was identified in 27.0% (10/37) of CIN III and 43.5% (10/23) of ISCC cases and low-level accumulation was identified in 35.1% (13/37) of CIN III and 30.4% (7/23) of ISCC cases. Extensive positivity for p53 was more frequently observed in cases of ISCC than in CIN III (not statistically significant).

Relation between HPV infection detected by PCR and p53 accumulation detected by immunohistochemistry

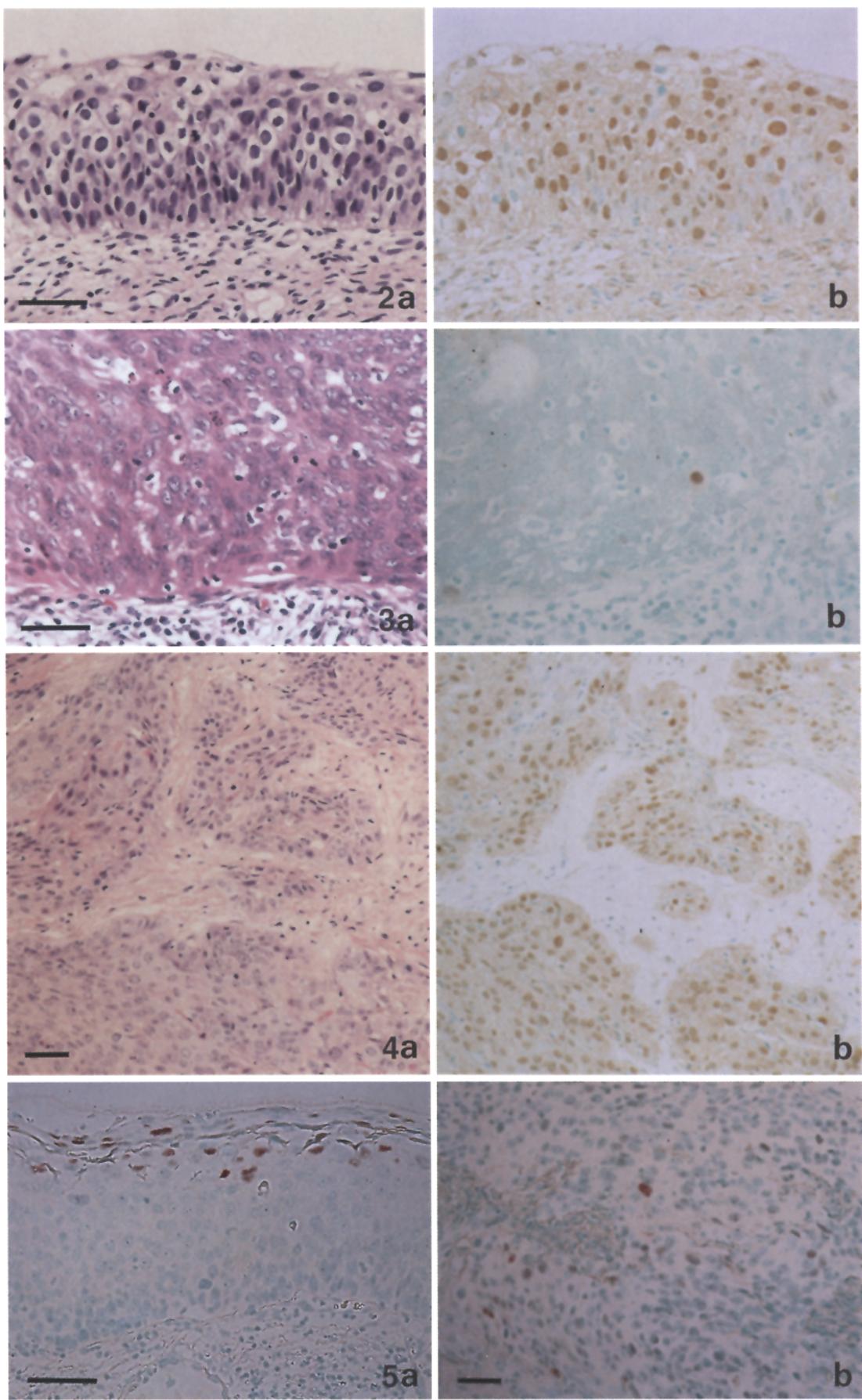

The results on accumulation of p53 with relation to HPV infection detected by PCR are shown in Table 6. The accumulation of p53 without HPV infection was detected in 16.2% (6/37: high-level, 2 cases; low-level, 4 cases) of CIN III and 21.8% (5/23: high-level, 2 cases; low-level, 3 cases) of ISCC cases. The accumulation of p53 with HPV infection was identified in 46.0% (17/37: high-level, 8 cases; low-level, 9 cases) of CIN III and 52.2% (12/23: high-level, 8 cases; low-level, 4 cases) of ISCC cases. The number of cases where the accumulation of p53 was detected tended to be higher for those with than for those without HPV infection. However, statistically there was no significant relationship between the HPV infection and the positivity rate or degree of accumulation of p53 in the CIN III and ISCC groups.

Fig. 2a,b p53 immunostaining in CIN III (high-level accumulation). **a** Haematoxylin and eosin stain. **b** Section close to **a**, p53-immunostained. Positive atypical cells extend from the basal layer to the superficial layer of the epithelium. $\times 280$, bar = 50 μ m

Fig. 3a,b p53 immunostaining in CIN III (low-level accumulation). **a** Haematoxylin and eosin stain. **b** Section close to **a**, p53-immunostained. An atypical cell is positive among the entire thickness of the atypical epithelium. $\times 280$, bar = 50 μ m

Fig. 4a,b p53 immunostaining in ISCC (high-level accumulation). **a** Haematoxylin and eosin stain. **b** Section close to **a**, p53-immunostained. Positive carcinoma cells are diffusely distributed in tumour cell nests. $\times 170$, bar = 50 μ m

Fig. 5a,b Detection of HPV DNA by *in situ* hybridization (ISH). **a** HPV DNA (types 16/18) is observed within the nucleus of superficial epithelial cells. A CIN III case with low-level accumulation of p53. $\times 280$. **b** HPV-positive cells are scattered. An ISCC case with high-level accumulation of p53. $\times 170$, bar = 50 μ m

Table 6 Accumulation of p53 in relation to HPV infection detected by PCR (*n* number of β -globin positive cases, *N* number of HPV-negative or positive cases, (%) percentage of β -globin positive cases)

Histological diagnosis	(n)	HPV-negative cases				HPV-positive cases			
		p53 immunoreactivity				p53 immunoreactivity			
		<i>N</i>	No	Low	High	<i>N</i>	No	Low	High
Normal or metaplastic cervix	(30)	25	25 (100%)	0	0	5	5 (100%)	0	0
CIN I	(17)	12	12 (100%)	0	0	5	5 (100%)	0	0
CIN II	(20)	11	11 (100%)	0	0	9	9 (100%)	0	0
CIN III	(37)	11	5 (13.5%)	4 (10.8%)	2 (5.4%)	26	9 (24.3%)	9 (24.3%)	8 (21.7%)
ISCC	(23)	8	3 (13.0%)	3 (13.0%)	2 (8.8%)	15	3 (13.0%)	4 (17.4%)	8 (34.8%)

Table 7 Detection of HPV DNA by in situ hybridization (ISH) in p53-positive cases

Histological diagnosis	(N)	Number of p53-positive cases		Number of HPV (16/18)-positive cases	Ratio of HPV-positive cells- <1% 1–10% 10%<		
		Low-level	High-level		<1%	1–10%	10%<
CIN III	(23)	13		3	1	1	1
			10	4	3	1	0
ISCC	(16)	7		2	1	1	0
			9	2	1	0	1

Table 8 Results of immunohistochemical and PCR-SSCP analyses of p53 with relation to HPV infection detected by PCR and ISH (+ positive, – negative, NA not amplified)

Case number	Histological diagnosis	Immunohistochemistry of p53	PCR-SSCP shift of p53				HPV types detected by PCR	HPV (16/18) infection detected by ISH (positive cells)
			Exon 5	6	7	8		
1	CIN III	High-level	–	–	–	–	16	+ (<1%)
2	CIN III	High-level	–	–	–	NA	–	–
3	ISCC	High-level	–	–	–	–	16+18	+ (14.5%)
4	ISCC	High-level	–	–	–	–	16+18	–
5	ISCC	High-level	+	–	–	NA	16+18	–
6	ISCC	High-level	–	+	–	NA	16	+ (<1%)
7	ISCC	High-level	–	–	–	–	16	–
8	ISCC	High-level	–	–	–	NA	16	–
9	ISCC	High-level	–	–	–	NA	16	–
10	ISCC	High-level	+	–	–	NA	–	–
11	ISCC	High-level	–	+	–	NA	–	–
12	ISCC	Low-level	–	–	–	NA	16	–
13	ISCC	Low-level	–	–	–	NA	–	–
14	ISCC	Low-level	–	–	–	–	–	–

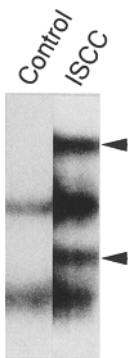

Virus detection by ISH

Table 7 shows the results of virus infection detected by ISH in available cases of CIN III and ISCC, which were immunohistochemically positive for p53. HPV (types 16/18) was detected in 7 cases of CIN III (30.4%) and in 4 cases of ISCC (25.0%). Positive signals were observed predominantly within the nucleus of superficial epithelial cells in CIN III (Fig. 5a), whereas in ISCC positive cells were scattered or focally accumulated (Fig. 5b). The proportion of HPV-positive cells was on average less than 15% in the lesions. Six of 11 cases had less than 1% of positivity. No correlation was evident between the degree of immunohistochemical positivity for p53 and the percentage of HPV-positive cells in the same lesions.

Polymerase chain reaction/single-strand conformation polymorphism

When formalin-fixed, paraffin-embedded tissue samples were used, all cases examined showed visible bands of amplification in exons 5–7 of p53 gene, but exon 8 was amplified in 5 of 14 cases (Table 8). Samples were regarded as positive if their mobility pattern differed from that of the control. In CIN III, an abnormal mobility shift was not observed. In ISCC, two additional bands with mobility shifts were observed in exon 5 of p53 in 2 cases and in exon 6 of p53 in 2 cases (Fig. 6), all of which showed high-level accumulation of p53 by immunohistochemistry and 2 of which were infected with HPV.

Fig. 6 PCR-SSCP analysis of *p53* gene in ISCC. Two additional bands with mobility shifts (arrows) are observed in exon 5 (case 5)

Discussion

Using Southern blot analysis following PCR, infection of HPV types 16 and 18 was detected in 29.4% of CIN I, 45.0% of CIN II, 70.3% of CIN III, and 65.2% of ISCC cases. The prevalence rates of HPV increased with the severity of the lesions. These results are comparable to those in recent studies using PCR as a detection system. HPV 16 and/or 18 DNAs have been detected in 20–62.5% in CIN I, 40–60% in CIN II, 48.4–77.8% in CIN III, and 53.0–93.1% in ISCC cases [1, 2, 12, 13, 29, 31, 39, 42, 48, 51, 56].

Several investigators have reported that HPV type 18 is more frequently associated with a more aggressive form of cervical carcinoma and with a greater likelihood of lymph node metastasis than tumours containing HPV type 16 [2, 3, 32]. However, our study provided no firm evidence for a close association between tumour invasiveness and the type of infection with HPV. The population of HPV type 18 among the groups of patients with CIN or ISCC did not differ significantly. Instead, ISCC contained of relatively high proportions of both types of HPV. Infection with more than one HPV type may be a high risk for tumour progression, because, as mentioned by Arends et al. [2], multiple factors derived from two or more types of HPV interact with many different sites in cellular regulatory genes, possibly inducing the deregulation of cellular differentiation and proliferation with high effectiveness. However, other possibilities are not excluded; multiple HPVs might easily infect ISCC cells or multiple HPVs might be derived not only from ISCC cells but also from non-neoplastic cells adjacent to ISCC.

HPV was also detected 16.7% of cases with a normal or metaplastic cervix in this study. Several previous studies using the PCR technique have found HPV infection in women without abnormal cytology, although the viral prevalence cited in these studies varied (2–30%) [13, 49, 51, 56]. The higher sensitivity of PCR may allow the identification of HPV in many cases prior to manifestation of either cytological or histological abnormality. Practically, however, it is not clear whether this positivity is related to an inactive latent infection or viral function

insufficient to cause disease. Alternatively, HPV type 16 in the cervix without association of atypical cells is stated to be a less oncogenic subtype (HPV 16b) [50]. Further study is necessary to elucidate the significance of HPV infection in such cases.

Some proportions of CIN and ISCC lesions were negative for HPV DNA. There is a possibility that these cases had HPV at copy numbers below the level of detection or infected with other or undetermined types of HPV [49]. Thus, further molecular studies such as PCR analysis using other types of HPV primers are required. Nevertheless, HPV-negative cervical neoplasms exist even though the incidence is low [2, 12, 13, 29, 31, 39, 42, 48, 51, 56]. In such cases, some cellular genes such as *c-myc* and *H-ras* proto-oncogenes are presumably activated and predominantly involved in carcinogenesis, as Riou et al. [40, 41, 43] suggested.

Our immunohistochemical study of *p53* in cervical tissues showed that *p53* protein was detected in 62.1% of CIN III and 73.9% of ISCC cases. No staining was observed in the normal or metaplastic cervix, CIN I or CIN II. There are diverse data on *p53* immunostaining. Bosari et al. [6] examined the immunolocalization of *p53* protein on formalin-fixed, paraffin-embedded cervical tissues with the monoclonal antibody PAb1801 and documented that suprabasal *p53* immunoreactivity was observed in 25% of high-grade squamous intraepithelial lesions (CIN II and CIN III) and 72% of invasive squamous cell carcinomas. Surprisingly, they claimed positive *p53* immunoreactivity, though confined to basal cell layer, in 74% of chronic cervicitis and in all cases of low-grade squamous intraepithelial lesions (CIN I). Holm et al. [26] identified *p53* protein in 7% of squamous cell carcinoma in situ (CIN III) and 62% of ISCC using both monoclonal and polyclonal anti-*p53* antibodies (PAb 1801 and CM1) and detected no staining in normal and dysplastic cells. Although the rates of *p53* positivity in the cervical neoplasms differ somewhat between the previous two reports and the present study, all of them at least indicated that *p53* immunoreactivity is commonly detected in cases of high-grade CIN and ISCC. The wild form of *p53* protein has a very short half-life [24], so it cannot be detected immunohistochemically. However, overexpressed or mutated *p53* proteins have a longer half-life [21] and can be recognized by immunohistochemistry. Burns et al. [9] investigated human primary SCCs and their cell lines, and reported good correlation between the presence of elevated immunoreactivity of *p53* protein and the presence of mutations within the coding region of the gene. In all SCC cell lines where elevated levels of *p53* protein were detected, mis-sense mutations or inframe deletions within the coding region were found. Other investigators have reported similar findings [4, 10, 28]. Thus, it has been widely accepted that the immunoreactive positivity of this protein indicates *p53* gene mutations. However, more recently, it was reported that the presence of *p53* immunoreactivity is not always accompanied by gene

mutations. Mutations of *p53* gene occur very infrequently in cervical carcinoma [22, 30] compared with the immunohistochemical positivity for *p53* protein [6, 26]. In the present study, abnormal bands with mobility shifts in *p53* gene were detected in only 4 of 11 cases which showed immunohistochemically high-level accumulation of *p53*, although the number of cases examined is fractionary and the aberration of exon 8 of *p53* was not completely denied in some cases. Therefore, taking recent and present studies together, the possibility remains that in CIN III and ISCC the immunoreactivity of *p53* protein results from the abnormal expression or degradation of *p53* protein rather than from the alteration of *p53* gene itself.

Our finding that *p53* positivity was found equally in advanced carcinoma and in severe dysplastic lesions suggests that the alteration of *p53* protein precedes the development of malignant tumours of invasive phenotype. This speculation is supported by the report of Oka et al. [37] revealing that *p53* positivity in cancer cells is not a predictive factor for prognosis in cervical cancer.

Several authors dealing with cervical carcinoma cell lines have reported that HPV-positive carcinomas express wild-type *p53*, whereas HPV-negative carcinomas express mutated *p53* [14, 46, 55]. Scheffner et al. [45] have demonstrated that the E6 protein of the oncogenic HPVs binds to facilitate degradation of *p53* protein and inactivates its function in tumour suppression. It is therefore postulated that loss of *p53* function by either mutations of *p53* gene or binding to HPV coding proteins is important in the pathogenesis of cervical carcinomas. In the present study, either high-risk HPV infection or *p53* accumulation was detected in most cases of CIN III (32/37, 86.5%) and ISCC (20/23, 87.0%) and the incidence in CIN III or ISCC was high compared with that in other groups. Our observations suggest that the inactivation of *p53* function by HPV infection or altered expression of *p53* protein occurs mostly in advance of the development of invasive carcinoma, which supports the hypothesis that the abnormality of *p53* protein is closely linked with cervical carcinogenesis. Although no inverse correlation between the degree of *p53* immunoreactivity and the ratio of HPV-positive cells was evident in the same lesions, our studies cannot deny an inverse correlation in the same cells.

The accumulation of *p53* was found to coexist with infection by HPV in 45.9% of CIN III cases and 52.2% of ISCC cases. As mentioned above, the wild type of *p53* protein bound with the E6 protein of oncogenic HPVs is rapidly degraded by an ATP-dependent, ubiquitin-mediated protease system [45]. However, it has been shown that mutated *p53* proteins form stable complexes with heat shock protein 70 and extend their half-life [21]. Therefore, *in vivo*, mutated *p53* proteins complexed with other proteins such as heat shock proteins may not be completely degraded by the protease system involving the gene products of HPV and can be detected in immunohistochemical studies. Alternative-

ly, mRNA of mutated *p53* may be overexpressed in some cases of CIN III and ISCC, as demonstrated in a few SCC cell lines [10] or in primary lung carcinomas [8].

Acknowledgements We are grateful to Prof. I. Nakanishi for his review of the manuscript and Miss Y. Muroishi for her excellent technical assistance. Also, we thank the staff of Fukui Saiseikai Hospital, Maizuru Kyousai Hospital, Komatsu City Hospital and Kanazawa City Hospital for providing us with tissue samples.

References

1. Arends MJ, Donaldson YK, Duvall E, Wyllie AH, Bird CC (1991) HPV in full thickness cervical biopsies: high prevalence in CIN 2 and CIN 3 detected by a sensitive PCR method. *J Pathol* 165: 301–309
2. Arends MJ, Donaldson YK, Duvall E, Wyllie AH, Bird CC (1993) Human papillomavirus type 18 associates with more advanced cervical neoplasia than human papillomavirus type 16. *Hum Pathol* 24: 432–437
3. Barnes W, Delgado G, Kurman RJ, Petrelli ES, Smith DM, Ahmed S, Lorincz AT, Temple GF, Jenson AB, Lancaster WD (1988) Possible prognostic significance of human papillomavirus type in cervical cancer. *Gynecol Oncol* 29: 267–273
4. Bennett WP, Hollstein MC, He A, Zhu SM, Resau JH, Trump BF, Metcalf RA, Welsh JA, Midgley C, Lane DP, Harris CC (1991) Archival analysis of *p53* genetic and protein alterations in Chinese esophageal cancer. *Oncogene* 6: 1779–1784
5. Bodner SM, Minna JD, Jensen SM, D'Amico D, Carbone D, Mitsudomi T, Fedorko J, Buchhagen DL, Nau MM, Gazdar AF, Linnoila RI (1992) Expression of mutant *p53* proteins in lung cancer correlates with the class of *p53* gene mutation. *Oncogene* 7: 743–749
6. Bosari S, Roncalli M, Viale G, Bossi P, Coggi G (1993) *p53* immunoreactivity in inflammatory and neoplastic diseases of the uterine cervix. *J Pathol* 169: 425–430
7. Boshart M, Gissmann L, Ikenberg H, Kleinheinz A, Scheurlen W, Hausen H zur (1984) A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. *EMBO J* 3: 1151–1157
8. Brambilla E, Gazzera S, Moro D, Fromentel CC de, Gouyer V, Jacrot M, Brambilla C (1993) Immunohistochemical study of *p53* in human lung carcinomas. *Am J Pathol* 143: 199–210
9. Burns JE, Baird MC, Clark LJ, Burns PA, Edington K, Chapman C, Mitchell R, Robertson G, Soutar D, Parkinson EK (1993) Gene mutations and increased levels of *p53* protein in human squamous cell carcinomas and their cell lines. *Br J Cancer* 67: 1274–1284
10. Caamano J, Zhang SY, Rosvold EA, Bauer B, Klein-Szanto AJP (1993) *p53* alterations in human squamous cell carcinomas and carcinoma cell lines. *Am J Pathol* 142: 1131–1139
11. Choo K-B, Pan C-C, Han S-H (1987) Integration of human papillomavirus type 16 into cellular DNA of cervical carcinoma: preferential deletion of the E2 gene and invariable retention of the long control region and the E6/E7 open reading frames. *Virology* 161: 259–261
12. Class ECJ, Quint WGV, Pieters WJLM, Burger MPM, Oosterhuis WJW, Lindeman J (1992) Human papillomavirus and the three group metaphase figure as markers of an increased risk for the development of cervical carcinoma. *Am J Pathol* 140: 497–502
13. Cornelissen MTE, Bots T, Briët MA, Jebbink MF, Struyk APHB, Tweel JG van den, Greer CE, Smits HL, Schegget J ter (1992) Detection of human papillomavirus types by the polymerase chain reaction and the differentiation between high-

risk and low-risk cervical lesions. *Virchows Arch [B]* 62: 167–171

14. Crook T, Wrede D, Vousden KH (1991) p53 point mutation in HPV negative human cervical carcinoma cell lines. *Oncogene* 6: 873–875

15. Crook T, Wrede D, Tidy JA, Mason WP, Evans DJ, Vousden KH (1992) Clonal p53 mutation in primary cervical cancer: association with human-papillomavirus-negative tumours. *Lancet* 339: 1070–1073

16. De Villiers E-M (1989) Heterogeneity of the human papillomavirus group. *J Virol* 63: 4898–4903

17. Dürst M, Gissmann L, Ikenberg H, Hausen H zur (1983) A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. *Proc Natl Acad Sci USA* 80: 3812–3815

18. Dyson N, Howley PM, Münger K, Harlow E (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. *Science* 243: 934–937

19. El Awady MK, Kaplan JB, O'Brien SJ, Burk RD (1987) Molecular analysis of integrated human papillomavirus 16 sequences in the cervical cancer cell line SiHa. *Virology* 159: 389–398

20. Erlich HA, Gelfand D, Sninsky JJ (1991) Recent advances in the polymerase chain reaction. *Science* 252: 1643–1651

21. Finlay CA, Hinds PW, Tan T-H, Eliyahu D, Oren M, Levine AJ (1988) Activating mutations for transformation by p53 produce a gene product that forms an hsc 70-p53 complex with an altered half-life. *Mol Cell Biol* 8: 531–539

22. Fujita M, Inoue M, Tanizawa O, Iwamoto S, Enomoto T (1992) Alteration of the p53 gene in human primary cervical carcinoma with and without human papillomavirus infection. *Cancer Res* 52: 5323–5328

23. Goelz SE, Hamilton SR, Vogelstein B (1985) Purification of DNA from formaldehyde fixed and paraffin embedded human tissue. *Biochem Biophys Res Commun* 130: 118–126

24. Gronostajski RM, Goldberg AL, Pardee AB (1984) Energy requirement for degradation of tumour-associated protein p53. *Mol Cell Biol* 4: 442–448

25. Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR, Schiller JT (1989) HPV 16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. *EMBO J* 8: 3905–3910

26. Holm R, Skomedal H, Helland Å, Kristensen G, Børresen A-L, Nesland JM (1993) Immunohistochemical analysis of p53 protein overexpression in normal premalignant, and malignant tissues of the cervix uteri. *J Pathol* 169: 21–26

27. Hsu S-M, Raine L, Fanger H (1981) A comparative study of the peroxidase-antiperoxidase method and an avidin-biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies. *Am J Clin Pathol* 75: 734–738

28. Iggo R, Gatter K, Bartek J, Lane D, Harris AL (1990) Increased expression of mutant forms of p53 oncogene in primary lung cancer. *Lancet* 335: 675–679

29. Kashiwabara K, Nakajima T (1992) Detection of human papillomavirus DNA in invasive cervical cancers by the polymerase chain reaction and its clinical significance. *Acta Pathol Jpn* 42: 876–883

30. Kessis TD, Slebos RJ, Han SM, Shah K, Bosch XF, Muñoz N, Hedrick L, Cho KR (1993) p53 gene mutations and MDM2 amplification are uncommon in primary carcinomas of the uterine cervix. *Am J Pathol* 143: 1398–1405

31. Kiyabu MT, Shibata D, Arnhem N, Martin WJ, Fitzgibbons PL (1989) Detection of human papillomavirus in formalin-fixed, invasive squamous carcinomas using the polymerase chain reaction. *Am J Surg Pathol* 13: 221–224

32. Kurman RJ, Schiffman MH, Lancaster WD, Reid R, Jenson AB, Temple GF, Lorincz AT (1988) Analysis of individual human papillomavirus types in cervical neoplasia: a possible role for type 18 in rapid progression. *Am J Obstet Gynecol* 159: 293–296

33. Kwok S, Higuchi R (1989) Avoiding false positives with PCR. *Nature* 339: 237–238

34. Lorincz AT, Reid R, Jenson AB, Greenberg MD, Lancaster W, Kurman RJ (1992) Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. *Obstet Gynecol* 79: 328–337

35. Murakami Y, Hayashi K, Hirohashi S, Sekiya T (1991) Aberrations of the tumour suppressor p53 and retinoblastoma genes in human hepatocellular carcinomas. *Cancer Res* 51: 5520–5525

36. Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P, Glover T, Collins FS, Weston A, Modali R, Harris CC, Vogelstein B (1989) Mutations in the p53 gene occur in diverse human tumour types. *Nature* 342: 705–708

37. Oka K, Nakano T, Arai T (1993) p53 CM1 expression is not associated with prognosis in uterine cervical carcinoma. *Cancer* 72: 160–164

38. Paquette RL, Lee YY, Wilczynski SP, Karmakar A, Kizaki M, Miller CW, Koeffler HP (1993) Mutations of p53 and human papillomavirus infection in cervical carcinoma. *Cancer* 72: 1272–1280

39. Resnik RM, Cornelissen MTE, Wright DK, Eichinger GH, Fox HS, Schegget J ter, Manos MM (1990) Detection and typing of human papillomavirus in archival cervical cancer specimens by DNA amplification with consensus primers. *J Natl Cancer Inst* 82: 1477–1484

40. Riou GF, Barrois M, Dutronquay V, Orth G (1985) Presence of papillomavirus DNA sequences, amplification of c-myc and c-Ha-ras oncogenes and enhanced expression of c-myc in carcinomas of the uterine cervix. In: Howley P, Brocker T (eds) *Papillomaviruses: molecular and clinical aspects*. Liss, New York, pp 47–56

41. Riou G, Barrois M, Sheng Z-M, Duvillard P, Lhomme C (1988) Somatic deletions and mutations of c-Ha-ras gene in human cervical cancers. *Oncogene* 3: 329–333

42. Riou G, Favre M, Jeannell D, Bourhis J, Le Doussal V, Orth G (1990) Association between poor prognosis in early-stage invasive cervical carcinomas and non-detection of HPV DNA. *Lancet* 335: 1171–1174

43. Riou GF, Bourhis J, Le MG (1990) The c-myc proto-oncogene in invasive carcinomas of the uterine cervix: clinical relevance of overexpression in early stages of the cancer. *Anticancer Res* 10: 1225–1232

44. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. *Science* 239: 487–491

45. Scheffner M, Werness BA, Huibregts JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. *Cell* 63: 1129–1136

46. Scheffner M, Münger K, Byrne JC, Howley PM (1991) The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. *Proc Natl Acad Sci USA* 88: 5523–5527

47. Schwarz E, Freese UK, Gissmann L, Mayer W, Roggenbuck B, Strelau A, Hausen H zur (1985) Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. *Nature* 314: 111–114

48. Shimada M, Fukushima M, Mukai H, Kato I, Nishikawa A, Fujinaga K (1990) Amplification and specific detection of transforming gene region of human papillomavirus 16, 18 and 31 in cervical carcinoma by means of the polymerase chain reaction. *Jpn J Cancer Res* 81: 1–5

49. Shroyer KR, Lovelance GS, Abarca ML, Fennell RH, Corkill ME, Woodard WD, Davilla GH (1993) Detection of human papillomavirus DNA by in situ hybridization and polymerase chain reaction in human papillomavirus equivocal and dysplastic cervical biopsies. *Hum Pathol* 24: 1012–1016

50. Tidy JA, Vousden KH, Farrell PJ (1989) Relation between infection with a subtype of HPV 16 and cervical neoplasia. *Lancet* I: 1225–1227

51. Van den Brule AJC, Snijders PJF, Gordijn RLJ, Bleker OP, Meijer CJLM, Walboomers JMM (1990) General primer-mediated polymerase chain reaction permits the detection of sequenced and still unsequenced human papillomavirus genotypes in cervical scrapes and carcinomas. *Int J Cancer* 45: 644-649
52. Werness BA, Levine AJ, Howley PM (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. *Science* 248: 76-79
53. Westra WH, Offerhaus GJA, Goodman SN, Slebos RJC, Polak M, Baas IO, Rodenhuis S, Hruban RH (1993) Overexpression of the p53 tumour suppressor gene product in primary lung adenocarcinomas is associated with cigarette smoking. *Am J Surg Pathol* 17: 213-220
54. Woodworth CD, Doniger J, DiPaolo JA (1989) Immortalization of human foreskin keratinocytes by various human papillomavirus DNAs corresponds to their association with cervical carcinoma. 63:159-164
55. Yaginuma Y, Westphal H (1991) Analysis of the p53 gene in human uterine carcinoma cell lines. *Cancer Res* 51: 6506-6509
56. Yoshikawa H, Kawana T, Kitagawa K, Mizuno M, Yoshikura H, Iwamoto A (1991) Detection and typing of multiple genital human papillomaviruses by DNA amplification with consensus primers. *Jpn J Cancer Res* 82: 524-531